Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
J Agric Food Chem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723176

RESUMEN

The most significant and sensitive antigen protein that causes diarrhea in weaned pigs is soybean 7S globulin. Therefore, identifying the primary target for minimizing intestinal damage brought on by soybean 7S globulin is crucial. MicroRNA (miRNA) is closely related to intestinal epithelium's homeostasis and integrity. However, the change of miRNAs' expression and the function of miRNAs in Soybean 7S globulin injured-IPEC-J2 cells are still unclear. In this study, the miRNAs' expression profile in soybean 7S globulin-treated IPEC-J2 cells was investigated. Fifteen miRNAs were expressed differently. The differentially expressed miRNA target genes are mainly concentrated in signal release, cell connectivity, transcriptional inhibition, and Hedgehog signaling pathway. Notably, we noticed that the most significantly decreased miRNA was ssc-miR-221-5p after soybean 7S globulin treatment. Therefore, we conducted a preliminary study on the mechanisms of ssc-miR-221-5p in soybean 7S globulin-injured IPEC-J2 cells. Our research indicated that ssc-miR-221-5p may inhibit ROS production to alleviate soybean 7S globulin-induced apoptosis and inflammation in IPEC-J2 cells, thus protecting the cellular mechanical barrier, increasing cell proliferation, and improving cell viability. This study provides a theoretical basis for the prevention and control of diarrhea of weaned piglets.

2.
Poult Sci ; 103(6): 103742, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38670056

RESUMEN

Unlike other poultry, parent pigeons produce "pigeon milk" in their crops to nurture their squabs, which is mainly controlled by prolactin (PRL). Exception for PRL, the pituitary gland may also release various other peptide and protein hormones. However, whether these hormones change during pigeon crop lactation and their potential physiological functions remain unclear. Here, to identify potential peptide or protein hormone genes that regulate crop lactation, we conducted transcriptome analysis of pigeon pituitary glands at 3 different breeding stages (the ceased stage-nonincubation and non-nurturing stage, the 11th d of the incubation, and the 1st d of the nurturing stage) using RNA sequencing (RNA-Seq). Our analysis identified a total of 15,191 mRNAs and screened out 297 differentially expressed genes (DEG), including PRL, VIP, etc. The expression abundance of PRL mRNA on the 1st d of the nurturing stage was respectively 4.93 and 3.62 folds higher when compared to the ceased stage and the 11th d of the incubation stage. Additionally, the expression abundance of VIP is higher in the 1st d of the nurturing stage than in the ceased stage. Protein-protein interaction (PPI) network and Molecular Complex Detection (MCODE) analysis identified several vital DEGs (e.g., GHRHR, VIP, etc.), being closely linked with hormone and enriched in neuropeptide signaling pathway and response to the hormone. Expression pattern analysis revealed that these DEGs exhibited 4 distinct expression patterns (profile 10, 16, 18, 19). Genes in profile 10 and 19 presented a trend with the highest expression level on 1st d of the nurturing stage, and functional enrichment analysis indicated that these genes are involved in neuropeptide hormone activity, receptor-ligand activity, and the extracellular matrix, etc. Taken together, being consistent with PRL, some genes encoding peptide and protein hormones (e.g., VIP) presented differentially expressed in different breeding stages. It suggests that these hormones may be involved in regulation of the crop lactation process or corresponding behavior in domestic pigeons. The results of this study help to gain new insights into the role of pituitary gland in regulating pigeon lactation.

3.
Biol Trace Elem Res ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528285

RESUMEN

Selenium nanoparticle (Nano-Se) is a new type of selenium supplement, which can improve the deficiency of traditional selenium supplements and maintain its physiological activity. Due to industrial pollution and irrational use in agriculture, Cu overexposure often occurs in animals and humans. In this study, Nano-Se alleviated CuSO4-induced testicular Cu accumulation, serum testosterone level decrease, testicular structural damage, and decrease in sperm quality. Meanwhile, Nano-Se reduced the ROS content in mice testis and enhanced the activities of T-AOC, GSH, SOD, and CAT compared with CuSO4 group. Furthermore, Nano-Se alleviated CuSO4-induced apoptosis by increasing the protein expression of Cleaved-Caspase-3, Cleaved-Caspase-9, Cleaved-Caspase-12, and Bax/Bcl-2 compared with CuSO4 group. At the same time, Nano-Se reversed CuSO4-induced increase of γ-H2AX protein expression in mice testis. In conclusion, this study confirmed that Nano-Se could alleviate oxidative stress, apoptosis, and DNA damage in the testis of mice with Cu excess, thereby protecting the spermatogenesis disorder induced by Cu.

4.
J Dairy Sci ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38554819

RESUMEN

Amputation dehorning (AD) is a common practice performed on calves, causing harmful effects such as pain, distress, anxiety, and fear. These effects extend to behavioral, physiological, and hematological responses, prompting serious ethical concerns regarding animal welfare, even when performed with local anesthesia. Meloxicam, a non-steroidal anti-inflammatory drug, has been widely used to mitigate the side effects of dehorning and disbudding in calves. However, there is a notable gap in research regarding the effects of meloxicam on calves aged 6 weeks to 6 mo undergoing AD procedures. This study was designed to assess the effectiveness of co-administering meloxicam with lidocaine, a cornual nerve anesthetic, in alleviating the adverse effects caused by the AD procedure in calves within this age range, compared with the use of lidocaine alone. Thirty Holstein calves were enrolled and randomly divided into 2 groups. The first group (Placebo) received a subcutaneous injection of 5 mL of lidocaine in the horn area and a subcutaneous injection of 0.9% saline at a dose of 0.025 mL/kg in the neck, administered 10 min before the AD procedure. The second group (MX) received a combination of lidocaine and meloxicam: a subcutaneous injection of 5 mL of lidocaine in the horn area and a subcutaneous injection of 20 mg/mL meloxicam at a dose of 0.025 mL/kg in the neck, also administered 10 min before the AD procedure. To avoid subjective bias, the researchers were blinded to the treatment groups. Pain-related behaviors, including tail flicking, head shaking, ear flicking, head rubbing, head crossing bar, and kicking, were observed, and physiological parameters, including heart rate, rectal temperature, respiration rate, mechanical nociceptive threshold (MNT), daily active steps, and food intake were monitored. Hematological conditions were determined using enzyme-linked immunosorbent assays and routine blood tests. The data were processed using a generalized linear mixed model (GLMM). The outcomes demonstrated that the AD procedure increased the frequencies of ear flicking and resulted in rises in the respiration rate, heart rate, rectal temperature, and daily active steps. It also led to decreases in total food intake, forage intake, hay intake, MNT, and increased concentrations of prostaglandin E2 (PgE2), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), nitric oxide (NO), and malondialdehyde, as well as glutathione peroxidase activity. However, calves that received meloxicam treatment showed significant improvements in response to the AD procedure, including lower respiration rates, heart rates, and rectal temperatures; higher MNTs; and lower intermediate cell ratio. They also had higher red blood counts, hemoglobin levels, hematocrit values; larger mean platelet volumes; and lower concentrations of PgE2, IL-1ß, TNF-α, and NO. These results suggest that co-administration of lidocaine and meloxicam may aid in mitigating the adverse impacts induced by the AD procedure on these calves, thereby supporting the use of meloxicam in conjunction with a local anesthetic in AD procedures for calves aged 6 weeks to 6 mo.

5.
Ecotoxicol Environ Saf ; 273: 116150, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430579

RESUMEN

Nickel (Ni), an environmental health hazard, is nephrotoxic to humans, but the exact mechanism is unknown. This study aims to identify whether nephrotoxicity is associated with autophagy. Here, nickel chloride (NiCl2) increased autophagy in TCMK-1 cells. NiCl2 induces autophagy through Akt and AMPK/mTOR pathways. Next, oxidative stress was investigated in NiCl2-induced autophagy. The findings demonstrated that the antioxidant (NAC) or mitochondrial targeted antioxidant (Mito-TEMPO) attenuated NiCl2-induced autophagy, reversed the influence on AMPK-mTOR and Akt pathways. Additionally, our study examined the role of autophagy in NiCl2-induced nephrotoxicity. Autophagy inhibition with 3-MA could inhibit cell viability and increase apoptosis in the TCMK-1 cells, however, autophagy promotion with rapamycin relieved cytotoxicity and decreased apoptosis. Additionally, co-treatment with Z-VAD-FMK reduced cytotoxicity, but did not affect autophagy. Besides, NiCl2 can increase the level of mitophagy in vivo and vitro. Mitophagy inhibition could inhibit cell viability and increase apoptosis in the TCMK-1 cells, whereas, promotion of mitophagy could increase cell viability and decrease apoptosis. In summary, above-mentioned results showed that NiCl2 induces autophagy in TCMK-1 cells through oxidative stress-dependent AMPK/AKT-mTOR pathway, autophagy plays a role in reducing NiCl2-induced renal toxicity, and a major mechanism in autophagy's inhibitory effect on NiCl2-induced apoptosis may be mitophagy.


Asunto(s)
Antioxidantes , Proteínas Proto-Oncogénicas c-akt , Humanos , Antioxidantes/farmacología , Níquel/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis , Autofagia
6.
Microbiome ; 12(1): 48, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454496

RESUMEN

BACKGROUND: Long-distance transportation, a frequent practice in the cattle industry, stresses calves and results in morbidity, mortality, and growth suppression, leading to welfare concerns and economic losses. Alkaline mineral water (AMW) is an electrolyte additive containing multiple mineral elements and shows stress-mitigating effects on humans and bovines. RESULTS: Here, we monitored the respiratory health status and growth performance of 60 Simmental calves subjected to 30 hours of road transportation using a clinical scoring system. Within the three days of commingling before the transportation and 30 days after the transportation, calves in the AMW group (n = 30) were supplied with AMW, while calves in the Control group (n = 29) were not. On three specific days, namely the day before transportation (day -3), the 30th day (day 30), and the 60th day (day 60) after transportation, sets of venous blood, serum, and nasopharyngeal swab samples were collected from 20 calves (10 from each group) for routine blood testing, whole blood transcriptomic sequencing, serology detection, serum untargeted metabolic sequencing, and 16S rRNA gene sequencing. The field data showed that calves in the AMW group displayed lower rectal temperatures (38.967 ℃ vs. 39.022 ℃; p = 0.004), respiratory scores (0.079 vs. 0.144; p < 0.001), appetite scores (0.024 vs. 0.055; p < 0.001), ocular and ear scores (0.185 vs. 0.338; p < 0.001), nasal discharge scores (0.143 vs. 0.241; p < 0.001), and higher body weight gains (30.870 kg vs. 7.552 kg; p < 0.001). The outcomes of laboratory and high throughput sequencing data revealed that the calves in the AMW group demonstrated higher cellular and humoral immunities, antioxidant capacities, lower inflammatory levels, and intestinal absorption and lipogenesis on days -3 and 60. The nasopharynx 16S rRNA gene microbiome analysis revealed the different composition and structure of the nasopharyngeal microflora in the two groups of calves on day 30. Joint analysis of multi-omics revealed that on days -3 and 30, bile secretion was a shared pathway enriched by differentially expressed genes and metabolites, and there were strong correlations between the differentially expressed metabolites and the main genera in the nasopharynx. CONCLUSIONS: These results suggest that AMW supplementation enhances peripheral immunity, nutrition absorption, and metabolic processes, subsequently affecting the nasopharyngeal microbiota and improving the respiratory health and growth performance of transported calves. This investigation provided a practical approach to mitigate transportation stress and explored its underlying mechanisms, which are beneficial for the development of the livestock industry. Video Abstract.


Asunto(s)
Multiómica , Nasofaringe , Animales , Bovinos , Antioxidantes , Minerales , ARN Ribosómico 16S/genética
7.
Biol Trace Elem Res ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376728

RESUMEN

Inflammation is a complex physiological process that enables the clearance of pathogens and repairing damaged tissues. Elevated serum copper concentration has been reported in cases of inflammation, but the role of copper in inflammatory responses remains unclear. This study used bovine macrophages to establish lipopolysaccharide (LPS)-induced inflammation model. There were five groups in the study: a group treated with LPS (100 ng/ml), a group treated with either copper chelator (tetrathiomolybdate, TTM) (20 µmol) or CuSO4 (25 µmol or 50 µmol) after LPS stimulation, and a control group. Copper concentrations increased in macrophages after the LPS treatment. TTM decreased mRNA expression of pro-inflammatory factors (IL-1ß, TNF-α, IL-6, iNOS, and COX-2), whereas copper supplement increased them. Compared to the control group, TLP4 and MyD88 protein levels were increased in the TTM and copper groups. However, TTM treatment decreased p-p65 and increased IкB-α while the copper supplement showed reversed results. In addition, the phagocytosis and migration of bovine macrophages decreased in the TTM treatment group while increased in the copper treatment groups. Results mentioned above indicated that copper could promote the LPS-induced inflammatory response in bovine macrophages, promote pro-inflammatory factors by activating the NF-кB pathway, and increase phagocytosis capacity and migration. Our study provides a possible targeted therapy for bovine inflammation.

8.
Environ Toxicol ; 39(4): 2208-2217, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38124272

RESUMEN

Copper is an essential trace element for animal. Excessive intake of copper will cause a large accumulation of copper in the body, especially in the liver, and induce hepatotoxicity, however, there are few studies on the effects of copper on hepatic mitochondrial biogenesis and mitochondrial dynamics. In this study, mice were treated with different doses of CuSO4 (0, 10, 20, and 40 mg/kg) for 21 and 42 days by gavage. The results verified that CuSO4 decreased the content of mitochondrial respiratory chain complexes I-IV in mouse liver. CuSO4 treatment resulted the decrease in the protein and mRNA expression levels of PGC-1α, TFAM, and NRF1, which were the mitochondrial biogenesis regulator proteins. Meanwhile, the proteins involved in mitochondrial fusion were reduced by CuSO4 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. Abovementioned results show that CuSO4 could induce mitochondria damage in the liver of mice, and mitochondrial biogenesis and mitochondrial dynamics are involved in the molecular mechanism of CuSO4 -induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cobre , Ratones , Animales , Cobre/toxicidad , Cobre/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
9.
Ecotoxicol Environ Saf ; 268: 115679, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976929

RESUMEN

Nickel (Ni) is the most important environmental pollution in the world. Ni has been confirmed to have multi-organ toxicology and carcinogenicity. Recently, Ni also can impair the male reproductive system, however, its precious mechanism still has not been clarified. The current work found that nickel chloride (NiCl2) induced histopathological lesions in testis. And, the Johnsen's score, seminiferous tubule diameter, and spermatogenic epithelium thickness were decreased in NiCl2-treated mice. The number of spermatogonium, primary spermatocyte, and round spermatid also were significantly reduced after Ni treatment. Next the potential molecular mechanism was measured. NiCl2 treatment elevated ROS production in the testis. Additionally, NiCl2 was found to induce apoptosis with features including up-regulation of Bax, cleaved-caspase-3, cleaved-caspase-8, caspase-9, and caspase-12, while down-regulation of Bcl-2 expression. In the meantime, the marker protein of DNA damage γ-H2AX was significantly increased in NiCl2-primed mice testis. To clarify effects of reactive oxygen species (ROS) in apoptosis and DNA damage induced by NiCl2, NiCl2 was used to co-treat antioxidant NAC (N-Acetyl-L-cysteine). NAC weakened ROS production induced by NiCl2, and played an inhibition role in apoptosis and DNA damage. Moreover, co-treatment using NiCl2 and NAC group also eliminated spermatogenesis disorders. In summary, research results reveal the relations of spermatogenesis disorder induced by NiCl2 with apoptosis and DNA damage mediated by ROS and apoptosis in the testis.


Asunto(s)
Apoptosis , Níquel , Ratones , Masculino , Animales , Especies Reactivas de Oxígeno , Níquel/toxicidad , Testículo , Daño del ADN
10.
Food Chem Toxicol ; 181: 114097, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37839787

RESUMEN

Copper (Cu) is one of the essential trace elements in the body, but excessive amounts of Cu harm multiple organs and tissues such as liver, kidneys, testis, ovaries, and brain. However, the mechanism of hypothalamic neurotoxicity induced by Cu is still unknown. This study examined the relationship between reactive oxygen species (ROS) and mitophagy in mouse hypothalamus treated with high Cu. The results demonstrated that high levels of copper sulfate (CuSO4) could cause histopathological and neuronal changes in the mouse hypothalamus, produce a large amount of ROS, induce mitophagy, and lead to an imbalance of mitochondrial fusion/fission. The main manifestations are an increase in the expression levels of LC3-II/LC3-I, p62, DRP1, and FIS1, and a decrease in the expression levels of MFN1 and MFN2. Cu can induce mitophagy also was confirmed by LC3 co-localization with TOMM20 (mitochondrial marker). Next, the effect of oxidative stress on CuSO4-induced mitophagy was demonstrated. The results showed that ROS inhibitor N-acetylcysteine (NAC) diminished CuSO4-induced mitophagy and reversed the disturbance of mitochondrial dynamics. Additionally, a study was carried out to evaluate the role of mitophagy in CuSO4-induced hypothalamic injury. The inhibition of mitophagy using mitophagy inhibitor (Mdivi-1) decreased cell viability and promoted CuSO4-inhibited mitochondrial fusion. The aforementioned results suggested that CuSO4 induced mitophagy via oxidative stress in N38 cells and mouse hypothalamus, and that the activation of mitophagy might generate protective mechanisms by alleviating Cu-induced mitochondrial dynamics disorder. This study provided a novel approach and theoretical basis for studying and preventing Cu neurotoxicity.


Asunto(s)
Enfermedades Mitocondriales , Mitofagia , Masculino , Ratones , Animales , Cobre/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Neuronas/metabolismo
11.
Redox Biol ; 67: 102886, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742495

RESUMEN

Nickel (Ni) is an essential common environmental contaminant, it is hazardous to male reproduction, but the precise mechanisms are still unknown. Blood-testis barrier (BTB), an important testicular structure consisting of connections between sertoli cells, is the target of reproductive toxicity caused by many environmental toxins. In this study, ultrastructure observation and BTB integrity assay results indicated that NiCl2 induced BTB damage. Meanwhile, BTB-related proteins including the tight junction (TJ), adhesion junction (AJ) and the gap junction (GJ) protein expression in mouse testes as well as in sertoli cells (TM4) were significantly decreased after NiCl2 treatment. Next, the antioxidant N-acetylcysteine (NAC) was co-treated with NiCl2 to study the function of oxidative stress in NiCl2-mediated BTB deterioration. The results showed that NAC attenuated testicular histopathological damage, and the expression of BTB-related proteins were markedly reversed by NAC co-treatment in vitro and vivo. Otherwise, NiCl2 activated the p38 MAPK signaling pathway. And, NAC co-treatment could significantly inhibit p38 activation induced by NiCl2 in TM4 cells. Furthermore, in order to confirm the role of the p38 MAPK signaling pathway in NiCl2-induced BTB impairment, a p38 inhibitor (SB203580) was co-treated with NiCl2 in TM4 cells, and p38 MAPK signaling inhibition significantly restored BTB damage induced by NiCl2 in TM4 cells. These results suggest that NiCl2 treatment destroys the BTB, in which the oxidative stress-mediated p38 MAPK signaling pathway plays a vital role.


Asunto(s)
Barrera Hematotesticular , Proteínas Quinasas p38 Activadas por Mitógenos , Ratones , Masculino , Animales , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Barrera Hematotesticular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Níquel/toxicidad , Níquel/metabolismo , Testículo/metabolismo
12.
Poult Sci ; 102(11): 103088, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741119

RESUMEN

Proteins are considered major effectors of sperm function. However, the proteins expressed in pigeon sperm have not been explored. Here, we collected semen from meat and racing pigeons using the electroejaculation method and identified proteins in pigeon sperm using the proteomics approach. A total of 1,641 proteins were identified in the sperm of domesticated pigeons. Of which, 1,541 proteins were reliably quantified, and gene ontology (GO) and associated bioinformatics analyses indicated that annotated proteins were linked to the oxidation-reduction process, integral component membrane, and protein binding, etc. Among quantified proteins, 1,515 and 1,507 proteins were respectively presented in White King pigeons and racing pigeons, and 1,481 proteins were shared between these 2 types of pigeons, including axonemal dynein, solute carrier, cilia- and flagella-associated protein, outer dense fiber protein, etc. Proteins in our constructed protein-protein interaction (PPI) network are involved in oxidative phosphorylation, sperm axoneme assembly, cilium-dependent cell motility, axonemal dynein complex assembly, flagellated sperm motility, etc. In conclusion, this study characterized the sperm proteome of pigeons and provided a foundation for the subsequent research screening markers for fertility evaluation of pigeons.

13.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37549918

RESUMEN

Caustic paste disbudding (CPD) is widely utilized for calves, which has been known to result in adverse effects on the calves and ethical concerns related to animal welfare, despite the use of local anesthetics. The administration of meloxicam has been demonstrated to provide benefits in alleviating pain and inflammation in juvenile calves under 9 d old and subjected to CPD. Nonetheless, there is a scarcity of literature documenting the beneficial impact of meloxicam in alleviating pain in calves aged over 9 d that have undergone CPD. Therefore, the objective of this clinical trial was to evaluate the efficacy of administering meloxicam and lidocaine for cornual nerve block together in mitigating the deleterious effects of CPD, as opposed to using lidocaine alone in calves older than 9 d. Thirty Holstein calves, aged between 10 and 21 d, were enrolled and randomly assigned to 1 of 2 treatments: lidocaine alone (Placebo), lidocaine and normal saline treatment before CPD, and lidocaine plus meloxicam, lidocaine and 0.5 mg/kg of meloxicam treatment prior to CPD. The researchers were blind to the treatment of calves to control the subjective error. The occurrences of actions associated with pain, which included head shaking, head rubbing, ear flicking, tail flicking, kicking, and head passing through the fence, were recorded. Physiological performance, including the respiration rate, heart rate, rectal temperature, mechanical nociceptive threshold (MNT), food intake, and daily activity level, was monitored. Hematological conditions were ascertained through the use of routine blood tests and enzyme-linked immunosorbent assay. The generalized linear mixed model was employed to analyze the data. The research findings revealed that applying the CPD procedure significantly elevated the frequencies of tail flicking, head shaking, and kicking, resulted in increases in respiratory rate, heart rate, daily active steps, and food intake and a decrease in MNT, and led to alterations in hematological markers, including platelet counts, mean platelet volume, prostaglandin E2, constitutive nitric oxide synthase, and hydroxyl radical. Considerable benefits, such as lower heart rates, higher food intake, and MNTs, as well as lower levels of white blood cell counts, lymphocyte counts, hemoglobin, mean platelet volume, prostaglandin E2, tumor necrosis factor-α, constitutive nitric oxide synthase, malondialdehyde, and hydroxyl radical, were observed in the calves that received meloxicam treatment in response to CPD. The findings of the study indicate that the co-administration of lidocaine and meloxicam provides obvious benefits in mitigating pain, inflammation, and oxidative stress in calves aged over 9 d and undergoing CPD. This endorses the use of meloxicam during the disbudding and dehorning procedures of calves.


Caustic paste disbudding (CPD) is a widely used practice in the cattle industry, yet there is a shortage of literature on the effects of meloxicam on calves aged 10 to 21 d who have undergone this procedure. In this clinical trial, we conducted a comparative analysis of the pain-related behavioral, physiological, and hematological performance of calves that were administered with either lidocaine plus normal saline (n = 15) or lidocaine plus meloxicam (n = 15) before undergoing disbudding operations. The findings demonstrated that the CPD operation had a significant impact on the pain-related behavior, physiological functions, and serum anti-inflammatory and antioxidative markers of the calves. On the other hand, the administration of meloxicam had notable advantages for the calves by enhancing the physiological and hematological parameters.


Asunto(s)
Cáusticos , Cuernos , Meloxicam , Animales , Bovinos , Cáusticos/efectos adversos , Dinoprostona/uso terapéutico , Cuernos/cirugía , Radical Hidroxilo/uso terapéutico , Inflamación/veterinaria , Lidocaína/uso terapéutico , Dolor/tratamiento farmacológico , Dolor/veterinaria , Bienestar del Animal
14.
ACS Appl Mater Interfaces ; 15(28): 33273-33287, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37410395

RESUMEN

When reactive oxygen species (ROS) accumulate in the body, they can lead to inflammatory bowel disease (IBD) through their oxidative damages to DNA, proteins, and lipids. In this study, a thermosensitive hydrogel-based nanozyme was developed to treat IBD. We first synthesized a manganese oxide (Mn3O4) nanozyme with multienzyme activity followed by physically loading with a thermosensitive hydrogel poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide)-based triblock copolymer (PDLLA-PEG-PDLLA). Then, a mouse model based on the inducement of dextran sulfate sodium (DSS) was built to assess the ROS targeting, scavenging, as well as anti-inflammatory ability of Mn3O4 nanozymes-loaded PDLLA-PEG-PDLLA (MLPPP). Because of the sharp gelation behavior of PDLLA-PEG-PDLLA in body temperature, the MLPPP nanozyme can easily target the inflamed colon after colorectal administration. Following the formation of a physical protection barrier and sustained release of manganese oxide nanozymes that had diverse enzymatic activities and can effectively scavenge ROS, the administration of the MLPPP nanozyme had a high efficacy for treating colitis mice; importantly, after the treatment with this novel nanoformulation, the levels of the pathological indicators in colons as well as in sera of colitis mice were even comparable to healthy mice. Therefore, the MLPPP nanozyme has a potential application for nanotherapy of IBD and would have great clinical translation prospects.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Poliésteres , Especies Reactivas de Oxígeno , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Hidrogeles , Polietilenglicoles
15.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511091

RESUMEN

Yaks are often subject to long-term starvation and a high prevalence of respiratory diseases and mortality in the withered season, yet the mechanisms that cause this remain unclear. Research has demonstrated that ß-hydroxybutyrate (BHB) plays a significant role in regulating the immune system. Hence, we hypothesize that the low glucose and high BHB condition induced by severe starvation might have an effect on the pro-inflammatory response of the alveolar macrophages (AMs) in yaks. To validate our hypothesis, we isolated and identified primary AMs from freshly slaughtered yaks and cultured them in a medium with 5.5 mM of glucose or 2.8 mM of glucose plus 1-4 mM of BHB. Utilizing a real-time quantitative polymerase chain reaction (RT-qPCR), immunoblot assay, and enzyme-linked immunosorbent assay (ELISA), we evaluated the gene and protein expression levels of GPR109A (G-protein-coupled receptor 109A), NF-κB p65, p38, and PPARγ and the concentrations of pro-inflammatory cytokines interleukin (IL)-1ß and IL-6 and tumor necrosis factor (TNF)-α in the supernatant. The results demonstrated that AMs exposed to low glucose plus BHB had significantly higher levels of IL-1ß, IL-6, and TNF-α (p < 0.05) and higher activity of the GPR109A/NF-κB signaling pathway. A pretreatment of either pertussis toxin (PTX, inhibitor of GPR109A) or pyrrolidinedithiocarbamic (PDTC, inhibitor of NF-κB p65) was effective in preventing the elevated secretion of pro-inflammatory cytokines induced by low glucose plus BHB (p < 0.05). These results indicated that the low glucose plus BHB condition would induce an enhanced pro-inflammatory response through the activation of the GPR109A/NF-κB signaling pathway in primary yak AMs, which is probably the reason why yaks experience a higher rate of respiratory diseases and mortality. This study will offer new insight into the prevention and treatment of bovine respiratory diseases.


Asunto(s)
Macrófagos Alveolares , FN-kappa B , Bovinos , Animales , FN-kappa B/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Macrófagos Alveolares/metabolismo , Interleucina-6/farmacología , Transducción de Señal , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Glucosa/farmacología
16.
PLoS Genet ; 19(6): e1010746, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37289658

RESUMEN

Pigeons (Columba livia) are among a select few avian species that have developed a specialized reproductive mode wherein the parents produce a 'milk' in their crop to feed newborn squabs. Nonetheless, the transcriptomic dynamics and role in the rapid transition of core crop functions during 'lactation' remain largely unexplored. Here, we generated a de novo pigeon genome assembly to construct a high resolution spatio-temporal transcriptomic landscape of the crop epithelium across the entire breeding stage. This multi-omics analysis identified a set of 'lactation'-related genes involved in lipid and protein metabolism, which contribute to the rapid functional transitions in the crop. Analysis of in situ high-throughput chromatin conformation capture (Hi-C) sequencing revealed extensive reorganization of promoter-enhancer interactions linked to the dynamic expression of these 'lactation'-related genes between stages. Moreover, their expression is spatially localized in specific epithelial layers, and can be correlated with phenotypic changes in the crop. These results illustrate the preferential de novo synthesis of 'milk' lipids and proteins in the crop, and provides candidate enhancer loci for further investigation of the regulatory elements controlling pigeon 'lactation'.


Asunto(s)
Columbidae , Transcriptoma , Animales , Femenino , Transcriptoma/genética , Columbidae/genética , Columbidae/metabolismo , Perfilación de la Expresión Génica , Leche , Lactancia
17.
Front Immunol ; 14: 1172849, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283750

RESUMEN

Introduction: The pathogenesis of Vibrio mimicus infection in yellow catfish (Pelteobagrus fulvidraco) remains poorly understood, particularly regarding the impact of infection with the pathogen on primary target organs such as the skin and muscle. Methods: In this study, we aim to analyze the pathological intricacies of the skin and muscle of yellow catfish after being infected with V. mimicus using a 1/10 LC50 seven-day post-infection model. Furthermore, we have utilized integrated bioinformatics to comprehensively elucidate the regulatory mechanisms and identify the key regulatory genes implicated in this phenomenon. Results: Our histopathological examination revealed significant pathological changes in the skin and muscle, characterized by necrosis and inflammation. Moreover, tissue remodeling occurred, with perimysium degeneration and lesion invasion into the muscle along the endomysium, accompanied by a transformation of type I collagen into a mixture of type I and type III collagens in the perimysium and muscle bundles. Our eukaryotic transcriptomic and 4D label-free analyses demonstrated a predominantly immune pathway response in both the skin and muscle, with downregulation observed in several cell signaling pathways that focused on focal adhesion-dominated cell signaling pathways. The upregulated genes included interleukins (IL)-1 and -6, chemokines, and matrix metallopeptidases (mmp)-9 and -13, while several genes were significantly downregulated, including col1a and col1a1a. Further analysis revealed that these pathways were differentially regulated, with mmp-9 and mmp-13 acting as the potential core regulators of cytokine and tissue remodeling pathways. Upregulation of NF-κB1 and FOSL-1 induced by IL-17C and Nox 1/2-based NADPH oxidase may have held matrix metallopeptidase and cytokine-related genes. Also, we confirmed these relevant regulatory pathways by qPCR and ELISA in expanded samples. Discussion: Our findings unequivocally illustrate the occurrence of a cytokine storm and tissue remodeling, mediated by interleukins, chemokines, and MMPs, in the surface of yellow catfish infected with V. mimicus. Additionally, we unveil the potential bidirectional regulatory role of MMP-9 and MMP-13. These results provide novel perspectives on the intricate immune response to V. mimicus infection in yellow catfish and highlight potential targets for developing therapies.


Asunto(s)
Bagres , Vibrio mimicus , Animales , Metaloproteinasa 13 de la Matriz , Metaloproteinasa 9 de la Matriz , Bagres/genética , Síndrome de Liberación de Citoquinas , Interleucinas
18.
Adv Sci (Weinh) ; 10(22): e2206798, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37330650

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Donafenib is a multi-receptor tyrosine kinase inhibitor approved for the treatment of patients with advanced HCC, but its clinical effect is very limited. Here, through integrated screening of a small-molecule inhibitor library and a druggable CRISPR library, that GSK-J4 is synthetically lethal with donafenib in liver cancer is shown. This synergistic lethality is validated in multiple HCC models, including xenograft, orthotopically induced HCC, patient-derived xenograft, and organoid models. Furthermore, co-treatment with donafenib and GSK-J4 resulted in cell death mainly via ferroptosis. Mechanistically, through integrated RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) analyses, that donafenib and GSK-J4 synergistically promoted the expression of HMOX1 and increased the intracellular Fe2+ level is found, eventually leading to ferroptosis. Additionally, through cleavage under targets & tagmentation followed by sequencing (CUT&Tag-seq), it is found that the enhancer regions upstream of HMOX1 promoter significantly increased under donafenib and GSK-J4 co-treatment. A chromosome conformation capture assay confirmed that the increased expression of HMOX1 is caused by the significantly enhanced interaction between the promoter and upstream enhancer under dual-drug combination. Taken together, this study elucidates a new synergistic lethal interaction in liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Hemo-Oxigenasa 1
19.
Microb Pathog ; 181: 106215, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37380063

RESUMEN

Type II secretion systems (T2SS) are important molecular machines used by bacteria to transport a wide range of proteins across the outer membrane from the periplasm. Vibrio mimicus is an epidemic pathogen threats to both aquatic animals and human health. Our previous study demonstrates that T2SS deletion reduced virulence by 307.26 times in yellow catfish. However, the specific effects of T2SS-mediated extracellular protein secretion in V. mimicus, including its potential role in exotoxin secretion or other mechanisms, require further investigation. Through proteomics and phenotypic analyses, this study observed that the ΔT2SS strain exhibited significant self-aggregation and dynamic deficiency, with a notable negative correlation with subsequent biofilm formation. The proteomics analysis revealed 239 different abundances of extracellular proteins after T2SS deletion, including 19 proteins with higher abundance and 220 proteins with lower and even absent in the ΔT2SS strain. These extracellular proteins are involved in various pathways, such as metabolism, virulence factors expression, and enzymes. Among them, purine, pyruvate, and pyrimidine metabolism, and the Citrate cycle, were the primary pathways affected by T2SS. Our phenotypic analysis is consistent with these findings, suggesting that the decreased virulence of ΔT2SS strains is due to the effect of T2SS on these proteins, which negatively impacts growth, biofilm formation, auto-aggregation, and motility of V. mimicus. These results provide valuable insights for designing deletion targets for attenuated vaccines development against V. mimicus and expand our understanding of the biological functions of T2SS.


Asunto(s)
Sistemas de Secreción Tipo II , Animales , Humanos , Sistemas de Secreción Tipo II/genética , Sistemas de Secreción Tipo II/metabolismo , Vacunas Atenuadas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
20.
Cell Biochem Funct ; 41(5): 542-552, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37170668

RESUMEN

PDZ-LIM domain-containing Protein 2 (PDLIM2) has been reported to be downregulated in ovarian cancer. However, its exact function and mechanism in regulating ovarian cancer progression have not been elucidated. This work researched the exert effect and mechanism of PDLIM2 on ovarian cancer progression. Briefly, PDLIM2 expression in clinical tissues of ovarian cancer patients and cells was investigated by qRT-PCR and Western blot. The function of PDLIM2 on the proliferation, colony formation, migration and invasion of ovarian cancer cells was explored via cell counting kit-8, colony formation and Transwell assays. To verify whether PDLIM2 regulates ovarian cancer progression via regulating the transforming growth factor-ß (TGF-ß)/Smad pathway, exogenous TGF-ß (10 ng/mL) treatment was performed on the PDLIM2-overexpressed ovarian cancer cells. PDLIM2 effect on the in vivo growth of ovarian cancer cells was researched by establishing a xenograft tumor model. Immunohistochemistry and Western blot were performed to protein expression in cells and tissues. As a result, PDLIM2 was low-expressed in ovarian cancer tissues/cells. PDLIM2 upregulation attenuated the proliferation, colony formation, migration, invasion and epithelial-mesenchymal transition (EMT) of ovarian cancer cells, and inactivated the TGF-ß/Smad pathway. The opposite results were found in the PDLIM2-silenced ovarian cancer cells. Exogenous TGF-ß treatment abrogated the inhibition of PDLIM2 on the malignant behavior of ovarian cancer cells. PDLIM2 upregulation attenuated the in vivo growth and EMT of ovarian cancer cells. Thus, PDLIM2 attenuates the proliferation, migration, invasion and EMT of ovarian cancer cells via inactivating the TGF-ß/Smad pathway. PDLIM2 may be a usefully target for ovarian cancer treatment.


Asunto(s)
Neoplasias Ováricas , Factor de Crecimiento Transformador beta , Humanos , Femenino , Factor de Crecimiento Transformador beta/metabolismo , Movimiento Celular , Proteínas Smad/metabolismo , Línea Celular Tumoral , Transducción de Señal , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/farmacología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...